An S4 class that contains all information on a spatial network which is
composed by a set of nodes that are linked by some neighborhood relation.
The class is constructed by the spflow_network()
function.
# S4 method for spflow_network
dat(object)
# S4 method for spflow_network
dat(
object,
node_key_column,
node_coord_columns,
derive_coordinates = FALSE,
prefer_lonlat = TRUE
) <- value
# S4 method for spflow_network
id(object)
# S4 method for spflow_network
id(object) <- value
# S4 method for spflow_network
neighborhood(object)
# S4 method for spflow_network
neighborhood(object) <- value
# S4 method for spflow_network
nnodes(object)
# S4 method for spflow_network
update_dat(object, new_dat)
A spflow_network-class
An object to replace the existing id/data/neighborhood
A character indicating the column containing the identifiers for the nodes
A character indicating the columns that represent the coordinates of the
nodes. For example c("LON", "LAT")
.
A logical indicating whether there should be an attempt to infer the coordinates from the node_data.
A logical indicating whether the coordinates should be transformed to longitude and latitude.
A data.frame
The data on each node is stored in a data.frame, where each node must be
uniquely identified by a key.
The neighborhood relations are described by a matrix that satisfies the
usual assumptions of the spatial weight matrix in spatial econometric models.
In most cases each node will only neighbor to a few others, in which case
the neighborhood matrix is represented as a sparseMatrix()
.
Function to create spatial neighborhood matrices can be found in the
spdep package.
id_net
A character that serves as an identifier for the set of nodes
node_data
A data.frame that contains all information describing the nodes
node_neighborhood
A matrix that describes the neighborhood relations of the nodes
## access the data describing the nodes
new_dat <- dat(germany_net)
# access the id of the network
germany_net2 <- germany_net
id(germany_net2)
#> [1] "ge"
id(germany_net2) <- "Germany"
# access the neighborhood matrix of the nodes
neighborhood(germany_net)
#> 16 x 16 sparse Matrix of class "dgCMatrix"
#>
#> SH . 0.5000000 0.5000000 . . . . .
#> HH 0.2 . 0.2000000 0.2000000 0.2000000 0.2000000 . .
#> MV 0.2 0.2000000 . . 0.2000000 0.2000000 0.2000000 .
#> NW . 0.2500000 . . 0.2500000 . . 0.2500000
#> HB . 0.1428571 0.1428571 0.1428571 . 0.1428571 . 0.1428571
#> BB . 0.1428571 0.1428571 . 0.1428571 . 0.1428571 .
#> BE . . 0.2500000 . . 0.2500000 . .
#> RP . . . 0.2000000 0.2000000 . . .
#> NI . . . 0.1250000 0.1250000 0.1250000 . 0.1250000
#> ST . . . . 0.1428571 0.1428571 0.1428571 .
#> SN . . . . . 0.2500000 0.2500000 .
#> SL . . . . . . . 0.2500000
#> HE . . . . . . . 0.1428571
#> TH . . . . . . . .
#> BW . . . . . . . .
#> BY . . . . . . . .
#>
#> SH . . . . . . .
#> HH . . . . . . .
#> MV . . . . . . .
#> NW 0.2500000 . . . . . .
#> HB 0.1428571 0.1428571 . . . . .
#> BB 0.1428571 0.1428571 0.1428571 . . . .
#> BE . 0.2500000 0.2500000 . . . .
#> RP 0.2000000 . . 0.2000000 0.2000000 . .
#> NI . 0.1250000 . 0.1250000 0.1250000 0.1250000 .
#> ST 0.1428571 . 0.1428571 . 0.1428571 0.1428571 .
#> SN . 0.2500000 . . . 0.2500000 .
#> SL 0.2500000 . . . 0.2500000 . 0.2500000
#> HE 0.1428571 0.1428571 . 0.1428571 . 0.1428571 0.1428571
#> TH 0.1666667 0.1666667 0.1666667 . 0.1666667 . 0.1666667
#> BW . . . 0.2500000 0.2500000 0.2500000 .
#> BY . . . . 0.3333333 0.3333333 0.3333333
#>
#> SH .
#> HH .
#> MV .
#> NW .
#> HB .
#> BB .
#> BE .
#> RP .
#> NI .
#> ST .
#> SN .
#> SL .
#> HE 0.1428571
#> TH 0.1666667
#> BW 0.2500000
#> BY .
# access the number of nodes inside the network
nnodes(germany_net)
#> [1] 16