An S4 class that contains the estimation results of spatial econometric interaction models estimated by the spflow() function.

There are four subclasses that are specific to the chosen estimation method (OLS, MLE, Bayesian MCMC or S2SLS). They contain some additional information specific to the corresponding method but most behaviors and data are identical among them.

# S4 method for spflow_model
coef(object, param_subset = NULL)

# S4 method for spflow_model
fitted(object, return_type = "V")

# S4 method for spflow_model
logLik(object)

# S4 method for spflow_model_mcmc
mcmc_results(object)

# S4 method for spflow_model
nobs(object, which = "sample")

# S4 method for spflow_model
neighborhood(object, which_nb)

# S4 method for spflow_model
resid(object, return_type = "V")

# S4 method for spflow_model
results(object)

# S4 method for spflow_model
results_flat(
  object,
  coef_info = c("est", "sd"),
  main_info = c("estimation_method", "model_coherence", "R2_corr", "ll", "sd_error")
)

# S4 method for spflow_model
sd_error(object)

# S4 method for spflow_model_varcov
varcov(object)

Arguments

object

A spflow_model

param_subset

A character indicating the subset of model parameters to be returned "rho" relates to the autoregression parameters and "delta" to those of the exogenous variables.

return_type

A character indicating the format of the returned values:

  • "V" leads to an atomic vector

  • "M" leads to a OD matrix where missing data is replaced by zeros

  • "OD" leads to a data.frame with columns being the the values and the id's of the destinations and the origins

which

A character vector indicating the subset of observations to consider should be one of c("fit", "cart", "pop", "pair", "orig", "dest").

which_nb

A character vector: "OW" for origin- and "DW" for destination neighborhood

coef_info

A character indicating column names in the results

main_info

A character indicating named elements in the estimation_control or estimation_diagnostics

Slots

estimation_results

A data.frame that contains the main results() of the estimation

estimation_control

A list that contains all control parameters of the estimation (see spflow_control())

estimation_diagnostics

A list of further indicators about the estimation

spflow_formula

A formula

spflow_networks

A spflow_network_multi-class()

spflow_matrices

A list or NULL

spflow_formula

The formula used to fit the model

spflow_indicators

A data.frame containing the indicators of od-pairs

spflow_moments

A list of moment matrices used for estimating the model

spflow_nbfunctions

A list that may contain a function to calculate the log-determinant term and one to validate the parameter space for the spatial interaction model.

Main results

The main results are accessed with the results() method. They are given in the form of a data frame with the following columns;

  • est: value of the estimated parameter

  • sd: value of the standard deviation of the parameter

  • t.test: value of the t-statistic under the two-sided hypothesis that the parameter value is 0.

  • p.val: the p-value associated to the t-test

  • quant_025: for Bayesian estimation the lower bound of 95% interval

  • quant_975: for Bayesian estimation the upper bound of 95% interval

Author

Lukas Dargel

Examples


spflow_results <- spflow(y9 ~ . + P_(DISTANCE), multi_net_usa_ge)

# General methods
results(spflow_results) # data.frame of main results
#>                    est         sd     t.stat        p.val  quant_025  quant_975
#> rho_d        0.4973547 0.03014394  16.499323 1.380740e-41  0.4382736  0.5564357
#> rho_o        0.3329122 0.03698759   9.000647 6.519306e-17  0.2604179  0.4054066
#> rho_w       -0.2266926 0.04430103  -5.117097 6.286715e-07 -0.3135210 -0.1398642
#> (Intercept) 10.1984199 2.16127645   4.718702 4.000168e-06  5.9623959 14.4344439
#> (Intra)      9.8708850 1.53144280   6.445481 6.109021e-10  6.8693122 12.8724577
#> D_X          0.9830507 0.06864236  14.321342 3.560579e-34  0.8485141  1.1175872
#> D_X.lag1     0.5087106 0.11464892   4.437116 1.380786e-05  0.2840028  0.7334183
#> O_X         -0.7587555 0.03809640 -19.916726 4.597166e-53 -0.8334230 -0.6840879
#> O_X.lag1    -0.3671947 0.09261763  -3.964630 9.661449e-05 -0.5487219 -0.1856675
#> I_X          2.0353094 0.08256791  24.650126 3.559790e-68  1.8734793  2.1971395
#> P_DISTANCE  -2.6218397 0.38393401  -6.828881 6.756072e-11 -3.3743365 -1.8693429
coef(spflow_results) # vector of estimated coefficients
#>       rho_d       rho_o       rho_w (Intercept)     (Intra)         D_X 
#>   0.4973547   0.3329122  -0.2266926  10.1984199   9.8708850   0.9830507 
#>    D_X.lag1         O_X    O_X.lag1         I_X  P_DISTANCE 
#>   0.5087106  -0.7587555  -0.3671947   2.0353094  -2.6218397 
fitted(spflow_results) # vector of fitted values
#>   [1]  70.5269714  50.7313438  59.2264813  25.3655601  45.6058515  54.4762978
#>   [7]  37.6779691  18.7507221  47.9836203  37.5703377  28.7870075  10.6905430
#>  [13]  16.1966491  11.2783405  -4.9354540  -5.5816679  41.3374471  82.1821197
#>  [19]  52.1207339  29.9805582  51.1448302  58.5083918  34.4574412  20.0691126
#>  [25]  49.3828677  37.4529444  27.2178711  10.8583329  15.8500487  11.3125403
#>  [31]  -5.7514817  -6.1967351  34.1375713  36.0149122  91.3951293  12.3503008
#>  [37]  41.3826090  53.2312287  37.7203015   7.3806426  37.7303268  30.6623934
#>  [43]  22.5659230  -0.2063087   6.4415599   2.7836281 -14.8862015 -15.2430073
#>  [49]  30.5627047  47.7528130  46.8684821  64.3020217  60.0761184  59.1740105
#>  [55]  38.9652316  40.6681479  69.4908949  48.5042522  36.6737188  29.0457289
#>  [61]  32.4958891  25.0209675  10.9306841   8.9236977  18.9354615  36.1343754
#>  [67]  42.6122027  27.4590332  92.6830387  53.7228657  29.3976429  23.3065551
#>  [73]  53.5330013  39.9311829  24.1628968   8.8976655  14.9695239   9.4347148
#>  [79]  -8.4324922  -9.6142483   8.7390923  25.8169757  37.2048266   6.3518237
#>  [85]  35.3401430 104.0637226  34.9837712   3.9658545  42.5431999  36.2965027
#>  [91]  30.0294154  -2.5893626   4.6375913   2.3782630 -15.9603743 -16.0624156
#>  [97]  18.5303796  26.9681095  45.9887403  11.7927226  37.4365940  59.4876780
#> [103]  82.4410414  11.2762724  44.9284581  46.4316953  42.2520340   5.9158728
#> [109]  14.5677699  13.2709974  -6.1348805  -4.7997091  24.6590951  37.5557968
#> [115]  42.0719644  39.3316067  55.9344261  55.6190608  37.1786941  69.2205942
#> [121]  70.5764298  48.7424554  35.4925554  37.7430799  39.5995689  27.2606756
#> [127]  15.4195397  11.8415220  -0.9055022  12.6994834  18.1594381  15.9208212
#> [133]  33.5966295  39.5491777  16.1562774  17.6188308 112.6727508  33.4194194
#> [139]  14.8840369  14.6381350  17.9169322  10.9619384  -9.0387227 -10.7416673
#> [145]   9.9829415  21.9153739  31.8342476  13.0509628  41.0264227  53.3675144
#> [151]  39.9722262  14.1352760  52.4940337  92.3529657  38.2953233  10.0997124
#> [157]  23.4924025  21.4734556  -1.5214615  -1.5058850  14.0800556  25.0552728
#> [163]  37.8915148  13.7516229  38.5051146  60.1218789  49.3519835  14.4964664
#> [169]  48.9562662  51.7450356  81.8134737  11.8411638  21.7755550  26.8981991
#> [175]   1.3394303   3.8510539  21.6226725  31.9016973  39.6206858  30.8519718
#> [181]  48.0189195  53.9346162  36.5267668  40.3964283  69.7619523  48.1084226
#> [187]  36.3508586  67.9458825  44.0175017  30.6554901  25.4147031  17.4867914
#> [193]  17.2576525  28.5474487  35.9991028  24.4924361  43.6744066  51.8872710
#> [199]  35.7232743  35.5621154  65.5965569  52.5095209  36.4785991  37.0401619
#> [205]  80.1195332  36.3463648  26.3574629  26.1497495  20.0284743  31.8894554
#> [211]  41.3225975  25.9957653  46.6441672  57.7135263  43.0844510  30.2817124
#> [217]  67.5022825  58.9613080  49.6887945  31.2874109  44.1960761  69.4418945
#> [223]  27.9141870  30.6490787  26.2195488  37.9051564  45.0504243  31.8092147
#> [229]  51.7607265  59.6135893  45.7991604  37.7111146  68.0924405  56.7932772
#> [235]  46.1957980  45.1392431  53.1312301  46.0212568  58.7370703  36.6092050
#> [241]  24.6482531  36.2671916  46.8855409  31.2785881  51.5774578  60.6124862
#> [247]  46.6625990  36.5661751  67.8520529  59.1232486  49.2772416  38.5180404
#> [253]  52.8097787  49.1933030  39.2000900  60.2497586
resid(spflow_results) # vector of residuals
#>   [1]  2.11214514 -0.36023608 -1.75806680  4.43755945 -1.08440288 -1.13266088
#>   [7]  1.16325271  0.87485174  1.04545118  1.63772552  1.09333930  1.87023862
#>  [13]  1.47642316 -0.24498135 -1.74180881  0.41396006  1.71222841  1.77732851
#>  [19]  1.93913800 -4.73442974 -0.30259970  1.01831525  0.71342279 -1.15517073
#>  [25]  1.21095372  2.58094837 -1.21191981  1.77091048 -0.27303257  1.56480736
#>  [31] -2.28205848  0.91231583  2.31035455  1.12820872  3.14325346  1.96066070
#>  [37]  4.27565875  2.53713948  0.66683022  0.51840733 -3.35303396  1.61610502
#>  [43]  1.42318977  0.14678503  1.51792516  1.35120638  1.95981058  2.13908927
#>  [49]  0.93127606  1.15534829  3.66505039  0.68510613  2.23823202  1.98637092
#>  [55]  0.41040316 -1.14542829 -3.02390742  1.52865502 -2.91340460  2.17920116
#>  [61] -1.35941639 -5.09645503  0.22899702  1.62893951  0.07269726 -3.22157135
#>  [67]  2.71277110 -2.45167656 -2.71376611 -0.58524790 -0.09683602  1.04538529
#>  [73]  0.79342982 -1.33730206 -4.19678177 -0.12431848  2.36691044  1.01667402
#>  [79] -0.83390265  0.31721541  0.26606021  0.63337982  3.03595133  0.01454234
#>  [85] -1.79106129 -1.39992376 -0.77020907  0.42146458  0.39075490  2.34650081
#>  [91]  0.61616375 -0.94772474 -3.93805935 -2.56814798  0.73339382 -1.07730709
#>  [97]  2.42976871 -1.77539197 -1.70862051 -4.40142627 -1.01707591  1.00188682
#> [103] -0.40709153  0.88110389  1.50819554 -0.33973639  2.01923436 -0.52759714
#> [109] -0.99142361 -0.35439571  0.29705948  1.02702855  2.34275842 -1.63374451
#> [115]  0.11629287 -1.59737486  2.62034094 -0.37091715 -1.18267013 -0.28286629
#> [121]  0.62398250  1.50071357 -3.90002191 -1.47012638 -3.61102954 -0.26724981
#> [127]  1.30215092  3.15877660  0.98188639 -0.75192661 -2.40283394 -0.20594510
#> [133]  2.27154948 -1.43780699  2.94742084  0.86891396  0.82781841  3.74875488
#> [139] -2.12987885  1.52444210  0.55645235 -2.90053840 -1.56784108 -0.06277611
#> [145] -0.96795717 -0.83857494 -3.38564727 -0.70961780 -0.92334047 -0.61810446
#> [151]  1.19311184 -0.41358547 -3.25542774  1.61682070  0.12650374 -3.03047945
#> [157]  0.39350570  1.92589277  1.52739323  0.42076456  1.76602611  0.52480121
#> [163]  0.81831364  0.25964817 -0.96844474 -1.04543447 -3.05448556 -0.01815262
#> [169]  0.49554949 -2.94328012 -3.54045432 -0.25398533  0.40381038  3.54493469
#> [175] -2.99158913  1.33598296  2.63159488 -5.98139858 -0.15614663 -0.03061795
#> [181]  5.48032343  0.30744542 -1.66195682 -0.83641828 -1.52076091 -4.03372627
#> [187] -2.03983747  0.57782125 -1.40671831  0.30582816  1.26291385  5.79797746
#> [193]  1.87016414 -0.88249135 -4.22357045 -1.10954732 -1.37561115  1.86301727
#> [199] -0.24009616  4.42511943 -0.78363133 -1.30184847 -0.27800154 -1.13858067
#> [205] -0.67901517 -1.37650543 -3.20553978 -1.48073898  0.18977448  2.38363548
#> [211] -0.71877507  0.86256078 -3.07518488  3.13047824  0.81439417 -0.80584736
#> [217]  0.56230286  1.21657523  0.91497607 -1.18324637 -1.65044114 -1.62354683
#> [223] -4.04725903 -1.85122433  0.05755356  1.78439671 -5.40162602 -1.31146829
#> [229]  1.49664962 -0.23470668  1.01518042  0.45971663  1.92472813 -0.29281082
#> [235] -0.40713111  2.19693076  6.51250777  0.56201636 -0.50488173 -1.00520433
#> [241]  0.42497081 -0.39394802  2.69021017 -1.13506342 -1.23135606 -0.36034669
#> [247] -2.52104765 -0.59367156 -0.30425164 -0.51413292 -0.71558832 -2.04517397
#> [253] -0.64098273 -1.28806789  2.60004031  0.41125216
nobs(spflow_results) # number of observations
#> [1] 256
sd_error(spflow_results) # standard deviation of the error term
#> [1] 1.992727
predict(spflow_results) # computation of the in sample predictor
#>     ID_DEST ID_ORIG      ACTUAL       SIGNAL      FITTED  PREDICTION
#> 1        SH      SH  68.4148262  45.14187869  70.5269714  73.3433069
#> 2        HH      SH  51.0915798  16.65173183  50.7313438  50.5508350
#> 3        MV      SH  60.9845481  20.78620988  59.2264813  58.4977416
#> 4        NW      SH  20.9280007   6.74202435  25.3655601  29.8333749
#> 5        HB      SH  46.6902544  19.83175525  45.6058515  45.0204405
#> 6        BB      SH  55.6089587  24.70945965  54.4762978  54.1563699
#> 7        BE      SH  36.5147164  13.68924708  37.6779691  39.2350586
#> 8        RP      SH  17.8758703   6.06733312  18.7507221  19.7131880
#> 9        NI      SH  46.9381691  25.25085093  47.9836203  48.5063528
#> 10       ST      SH  35.9326122  17.00246835  37.5703377  40.1078545
#> 11       SN      SH  27.6936682  10.37997566  28.7870075  29.9427223
#> 12       SL      SH   8.8203044   3.09035668  10.6905430  13.3920884
#> 13       HE      SH  14.7202260   7.27461553  16.1966491  17.9051881
#> 14       TH      SH  11.5233219   3.17514177  11.2783405  11.5937970
#> 15       BW      SH  -3.1936452  -4.70142469  -4.9354540  -6.4251620
#> 16       BY      SH  -5.9956280  -4.87625289  -5.5816679  -4.3004844
#> 17       SH      HH  39.6252187   8.90619695  41.3374471  43.8499013
#> 18       HH      HH  80.4047912  56.28423399  82.1821197  84.0948500
#> 19       MV      HH  50.1815959  18.48234820  52.1207339  54.3192325
#> 20       NW      HH  34.7149880   5.50693165  29.9805582  24.9194289
#> 21       HB      HH  51.4474299  19.06373172  51.1448302  51.3751342
#> 22       BB      HH  57.4900766  23.47436695  58.5083918  59.6261725
#> 23       BE      HH  33.7440184  11.85245456  34.4574412  35.7488878
#> 24       RP      HH  21.2242833   5.10584320  20.0691126  19.2050183
#> 25       NI      HH  48.1719140  24.48282739  49.3828677  50.8444281
#> 26       ST      HH  34.8719960  16.04097843  37.4529444  39.7907488
#> 27       SN      HH  28.4297909   9.02760737  27.2178711  26.3855800
#> 28       SL      HH   9.0874224   2.21963035  10.8583329  12.1871358
#> 29       HE      HH  16.1230813   6.50659199  15.8500487  15.5003457
#> 30       TH      HH   9.7477330   2.30441544  11.3125403  12.8813129
#> 31       BW      HH  -3.4694232  -5.46944823  -5.7514817  -7.5868789
#> 32       BY      HH  -7.1090509  -5.70742635  -6.1967351  -5.2906657
#> 33       SH      MV  31.8272167   3.80610118  34.1375713  38.4657908
#> 34       HH      MV  34.8867035   9.24777437  36.0149122  37.4726019
#> 35       MV      MV  88.2518758  67.66716631  91.3951293  95.1124657
#> 36       NW      MV  10.3896401  -0.66193310  12.3503008  14.6797515
#> 37       HB      MV  37.1069503  13.96363595  41.3826090  45.6374393
#> 38       BB      MV  50.6940892  20.54627431  53.2312287  55.9419698
#> 39       BE      MV  37.0534713   9.99313090  37.7203015  39.5486281
#> 40       RP      MV   6.8622353  -0.46132174   7.3806426   8.4022380
#> 41       NI      MV  41.0833607  19.84980079  37.7303268  34.8620392
#> 42       ST      MV  29.0462884  12.64581662  30.6623934  32.5762780
#> 43       SN      MV  21.1427333   6.56658390  22.5659230  24.7788697
#> 44       SL      MV  -0.3530937  -2.95665623  -0.2063087   0.2988507
#> 45       HE      MV   4.9236348   2.06703177   6.4415599   7.7378385
#> 46       TH      MV   1.4324217  -1.28421275   2.7836281   4.1464103
#> 47       BW      MV -16.8460120  -9.80630565 -14.8862015 -12.3355392
#> 48       BY      MV -17.3820966  -9.39875734 -15.2430073 -12.2148136
#> 49       SH      NW  29.6314287  10.87256117  30.5627047  33.5032918
#> 50       HH      NW  46.5974648  17.38300334  47.7528130  48.4785495
#> 51       MV      NW  43.2034317  20.44871242  46.8684821  50.4487996
#> 52       NW      NW  63.6169156  38.53995989  64.3020217  64.8064531
#> 53       HB      NW  57.8378864  24.27086805  60.0761184  62.1891396
#> 54       BB      NW  57.1876396  27.14566513  59.1740105  61.0000945
#> 55       BE      NW  38.5548284  15.05668358  38.9652316  39.7320052
#> 56       RP      NW  41.8135762  13.55375164  40.6681479  39.3064228
#> 57       NI      NW  72.5148023  31.22580187  69.4908949  66.3906747
#> 58       ST      NW  46.9755972  21.24811476  48.5042522  50.2506954
#> 59       SN      NW  39.5871234  13.35944111  36.6737188  32.9939261
#> 60       SL      NW  26.8665277  10.47407241  29.0457289  30.6525058
#> 61       HE      NW  33.8553055  13.71663564  32.4958891  30.9422606
#> 62       TH      NW  30.1174226   8.38685437  25.0209675  19.7018279
#> 63       BW      NW  10.7016871   1.93406181  10.9306841  10.2239990
#> 64       BY      NW   7.2947582   0.85665453   8.9236977   9.6651894
#> 65       SH      HB  18.8627642   1.85061197  18.9354615  18.1268404
#> 66       HH      HB  39.3559468   8.82812331  36.1343754  32.9535146
#> 67       MV      HB  39.8994316  12.96260136  42.6122027  44.6547494
#> 68       NW      HB  29.9107098   2.15918795  27.4590332  24.4082536
#> 69       HB      HB  95.3968049  67.82889877  92.6830387  89.8419618
#> 70       BB      HB  54.3081136  20.12662324  53.7228657  53.1191875
#> 71       BE      HB  29.4944789   8.03764169  29.3976429  28.7006894
#> 72       RP      HB  22.2611698   2.82686847  23.3065551  24.0325921
#> 73       NI      HB  52.7395715  22.67092183  53.5330013  54.1150348
#> 74       ST      HB  41.2684850  13.76200370  39.9311829  38.4419208
#> 75       SN      HB  28.3596786   6.14693284  24.1628968  19.6579683
#> 76       SL      HB   9.0219840   0.21425840   8.8976655   8.6065659
#> 77       HE      HB  12.6026134   4.69468644  14.9695239  16.9180049
#> 78       TH      HB   8.4180407   0.29904350   9.4347148  10.3337208
#> 79       BW      HB  -7.5985895  -7.28135378  -8.4324922  -9.2939148
#> 80       BY      HB  -9.9314637  -7.62203470  -9.6142483  -9.3098710
#> 81       SH      BB   8.4730321  -2.98174889   8.7390923   9.4211235
#> 82       HH      BB  25.1835958   3.52869328  25.8169757  26.1119478
#> 83       MV      BB  34.1688753   9.83517447  37.2048266  39.8285598
#> 84       NW      BB   6.3372813  -4.67608023   6.3518237   6.1033809
#> 85       HB      BB  37.1312043  10.41655799  35.3401430  33.3203646
#> 86       BB      BB 105.4636464  79.28865402 104.0637226 102.4496829
#> 87       BE      BB  35.7539803   6.44605294  34.9837712  34.2670531
#> 88       RP      BB   3.5443899  -3.54133053   3.9658545   3.7132766
#> 89       NI      BB  42.1524450  17.37149181  42.5431999  42.6738182
#> 90       ST      BB  33.9500019  10.63457681  36.2965027  38.3747927
#> 91       SN      BB  29.4132517   4.08827492  30.0294154  30.2561348
#> 92       SL      BB  -1.6416378  -5.55224079  -2.5893626  -4.3275891
#> 93       HE      BB   8.5756506  -0.13767442   4.6375913   1.1119357
#> 94       TH      BB   4.9464110  -3.29545256   2.3782630  -0.4468313
#> 95       BW      BB -16.6937681 -11.92024826 -15.9603743 -15.8898549
#> 96       BY      BB -14.9851085 -11.40999715 -16.0624156 -18.3800959
#> 97       SH      BE  16.1006108   2.79045325  18.5303796  20.2606236
#> 98       HH      BE  28.7435015   8.69919562  26.9681095  25.0376683
#> 99       MV      BE  47.6973609  16.07444578  45.9887403  44.0713929
#> 100      NW      BE  16.1941489   0.02735294  11.7927226   6.7571944
#> 101      HB      BE  38.4536699  15.11999116  37.4365940  36.4038703
#> 102      BB      BE  58.4857912  23.23846766  59.4876780  60.1599121
#> 103      BE      BE  82.8481329  56.79369123  82.4410414  81.9151941
#> 104      RP      BE  10.3951685   1.35556902  11.2762724  11.8663350
#> 105      NI      BE  43.4202626  22.54199414  44.9284581  46.2383705
#> 106      ST      BE  46.7714317  16.87384812  46.4316953  46.0768166
#> 107      SN      BE  40.2327996  12.49954937  42.2520340  44.0411680
#> 108      SL      BE   6.4434700  -0.26446287   5.9158728   4.9138562
#> 109      HE      BE  15.5591935   5.63452772  14.5677699  13.3205154
#> 110      TH      BE  13.6253932   3.41088792  13.2709974  12.7160998
#> 111      BW      BE  -6.4319400  -5.75716775  -6.1348805  -6.0232053
#> 112      BY      BE  -5.8267377  -4.51019028  -4.7997091  -3.7517394
#> 113      SH      RP  22.3163367   7.03082891  24.6590951  26.7389132
#> 114      HH      RP  39.1895413  13.81487386  37.5557968  35.6869355
#> 115      MV      RP  41.9556715  17.48228275  42.0719644  41.6646471
#> 116      NW      RP  40.9289816  10.38671061  39.3316067  37.3284556
#> 117      HB      RP  53.3140852  21.77150755  55.9344261  58.1050027
#> 118      BB      RP  55.9899779  25.11337380  55.6190608  55.0822942
#> 119      BE      RP  38.3613642  13.21785863  37.1786941  35.6845261
#> 120      RP      RP  69.5034605  44.98621120  69.2205942  68.9925525
#> 121      NI      RP  69.9524473  30.89844450  70.5764298  71.0940325
#> 122      ST      RP  47.2417418  20.45368823  48.7424554  50.1003646
#> 123      SN      RP  39.3925773  12.37154819  35.4925554  30.9651599
#> 124      SL      RP  39.2132063  11.68255318  37.7430799  35.7883406
#> 125      HE      RP  43.2105984  14.45804725  39.5995689  35.8850093
#> 126      TH      RP  27.5279254   8.52656617  27.2606756  26.2645689
#> 127      BW      RP  14.1173888   2.94907620  15.4195397  16.0061888
#> 128      BY      RP   8.6827454   1.48079056  11.8415220  14.2703920
#> 129      SH      NI  -1.8873886  -7.06704411  -0.9055022  -0.7061123
#> 130      HH      NI  13.4514100  -0.08953277  12.6994834  12.3005144
#> 131      MV      NI  20.5622720   4.51201446  18.1594381  15.8918339
#> 132      NW      NI  16.1267663  -5.22262998  15.9208212  15.8401160
#> 133      HB      NI  31.3250800   8.33417009  33.5966295  35.3496306
#> 134      BB      NI  40.9869847  12.74480531  39.5491777  37.9135006
#> 135      BE      NI  13.2088565   1.12289293  16.1562774  18.9505317
#> 136      RP      NI  16.7499169  -2.38294632  17.6188308  18.4518430
#> 137      NI      NI 111.8449323  89.92711162 112.6727508 113.1773718
#> 138      ST      NI  29.6706645   8.55218891  33.4194194  36.5632111
#> 139      SN      NI  17.0139158   0.47004888  14.8840369  12.9964805
#> 140      SL      NI  13.1136929  -3.92678741  14.6381350  16.0490381
#> 141      HE      NI  17.3604798   1.02070979  17.9169322  18.4476095
#> 142      TH      NI  13.8624768  -3.84200232  10.9619384   8.4560995
#> 143      BW      NI  -7.4708816 -10.95533043  -9.0387227 -10.8550340
#> 144      BY      NI -10.6788912 -11.48947773 -10.7416673 -11.6051119
#> 145      SH      ST  10.9508987  -1.35406291   9.9829415   7.3510222
#> 146      HH      ST  22.7539488   5.42998205  21.9153739  20.6999573
#> 147      MV      ST  35.2198949  11.26939407  31.8342476  28.4570463
#> 148      NW      ST  13.7605806  -1.23895331  13.0509628  11.2699813
#> 149      HB      ST  41.9497631  13.38661573  41.0264227  39.9091581
#> 150      BB      ST  53.9856189  19.96925409  53.3675144  52.1900597
#> 151      BE      ST  38.7791143   9.41611069  39.9722262  40.6980771
#> 152      RP      ST  14.5488615   1.13366118  14.1352760  13.0575440
#> 153      NI      ST  55.7494614  22.51355268  52.4940337  49.1848010
#> 154      ST      ST  90.7361450  67.88954844  92.3529657  93.4380138
#> 155      SN      ST  38.1688195   9.23033580  38.2953233  38.1350175
#> 156      SL      ST  13.1301918   0.05688925  10.0997124   6.5834307
#> 157      HE      ST  23.0988968   6.07315543  23.4924025  23.4143483
#> 158      TH      ST  19.5475629   3.38244646  21.4734556  22.4329377
#> 159      BW      ST  -3.0488547  -5.43581562  -1.5214615  -0.2432541
#> 160      BY      ST  -1.9266496  -4.73209812  -1.5058850  -1.0460725
#> 161      SH      SN  12.3140295   1.67094499  14.0800556  15.9264697
#> 162      HH      SN  24.5304716   8.06411158  25.0552728  24.7408400
#> 163      MV      SN  37.0732012  14.83766194  37.8915148  37.8667641
#> 164      NW      SN  13.4919748   0.51987363  13.7516229  13.4961900
#> 165      HB      SN  39.4735594  15.41904546  38.5051146  36.8741952
#> 166      BB      SN  61.1673134  23.07045280  60.1218789  59.2396676
#> 167      BE      SN  52.4064691  14.68931253  49.3519835  45.6632072
#> 168      RP      SN  14.5146190   2.69902173  14.4964664  14.0580549
#> 169      NI      SN  48.4607167  24.07891324  48.9562662  48.7044066
#> 170      ST      SN  54.6883157  18.87783639  51.7450356  49.1723750
#> 171      SN      SN  85.3539281  56.43990148  81.8134737  77.5280470
#> 172      SL      SN  12.0951492   1.81571620  11.8411638  11.1306089
#> 173      HE      SN  21.3717446   8.10558516  21.7755550  21.5083421
#> 174      TH      SN  23.3532644   6.48364516  26.8981991  29.9032473
#> 175      BW      SN   4.3310194  -2.80168609   1.3394303  -2.0523497
#> 176      BY      SN   2.5150709  -1.16383025   3.8510539   4.9897341
#> 177      SH      SL  18.9910776   4.84216720  21.6226725  23.2441600
#> 178      HH      SL  37.8830959  11.71697575  31.9016973  25.5526752
#> 179      MV      SL  39.7768324  15.77526300  39.6206858  38.6220722
#> 180      NW      SL  30.8825897   8.09534611  30.8519718  30.4118901
#> 181      HB      SL  42.5385961  19.94721222  48.0189195  53.1257957
#> 182      BB      SL  53.6271707  23.89077828  53.9346162  54.2049756
#> 183      BE      SL  38.1887236  12.38614148  36.5267668  33.9329145
#> 184      RP      SL  41.2328466  12.47086792  40.3964283  39.7369302
#> 185      NI      SL  71.2827132  30.14291815  69.7619523  68.1829375
#> 186      ST      SL  52.1421489  20.16523104  48.1084226  44.4023933
#> 187      SN      SL  38.3906960  12.27655739  36.3508586  33.1542877
#> 188      SL      SL  67.3680612  44.85884689  67.9458825  68.3445274
#> 189      HE      SL  45.4242200  15.87452403  44.0175017  41.9987643
#> 190      TH      SL  30.3496619   9.47597378  30.6554901  29.8787977
#> 191      BW      SL  24.1517893   5.43432195  25.4147031  26.1128829
#> 192      BY      SL  11.6888139   3.36433651  17.4867914  23.3295325
#> 193      SH      HE  15.3874884   2.13177058  17.2576525  17.4259730
#> 194      HH      HE  29.4299400   9.10928192  28.5474487  27.3191426
#> 195      MV      HE  40.2226732  13.90429553  35.9991028  31.7955413
#> 196      NW      HE  25.6019835   4.44325387  24.4924361  22.9940945
#> 197      HB      HE  45.0500177  17.53298477  43.6744066  41.7607393
#> 198      BB      HE  50.0242537  22.41068917  51.8872710  53.0744455
#> 199      BE      HE  35.9633705  11.39047659  35.7232743  34.8136414
#> 200      RP      HE  31.1369960   8.35170651  35.5621154  39.1654952
#> 201      NI      HE  66.3801883  28.19575987  65.5965569  64.3656109
#> 202      ST      HE  53.8113694  19.28684174  52.5095209  50.9048890
#> 203      SN      HE  36.7566006  11.67177087  36.4785991  35.4433840
#> 204      SL      HE  38.1787426   8.97986855  37.0401619  35.4208937
#> 205      HE      HE  80.7985484  55.86372959  80.1195332  79.3503263
#> 206      TH      HE  37.7228702   9.06465365  36.3463648  34.8674285
#> 207      BW      HE  29.5630026   3.48716368  26.3574629  22.5427277
#> 208      BY      HE  27.6304885   2.48594721  26.1497495  23.3146884
#> 209      SH      TH  19.8386999   4.78096809  20.0284743  20.6229942
#> 210      HH      TH  29.5058199  11.65577664  31.8894554  33.5738372
#> 211      MV      TH  42.0413726  17.30172227  41.3225975  40.3990571
#> 212      NW      TH  25.1332045   5.86214386  25.9957653  26.5157090
#> 213      HB      TH  49.7193521  19.88601311  46.6441672  43.6246023
#> 214      BB      TH  54.5830481  26.00158230  57.7135263  60.1013958
#> 215      BE      TH  42.2700568  15.91550806  43.0844510  44.0954036
#> 216      RP      TH  31.0875598   9.16889669  30.2817124  29.0151283
#> 217      NI      TH  66.9399797  30.08171903  67.5022825  67.7048706
#> 218      ST      TH  57.7447327  23.34480404  58.9613080  59.7412373
#> 219      SN      TH  48.7738184  16.79850215  49.6887945  50.4350513
#> 220      SL      TH  32.4706573   9.32998957  31.2874109  29.3647244
#> 221      HE      TH  45.8465173  15.81332491  44.1960761  42.6660303
#> 222      TH      TH  71.0654413  44.88243287  69.4418945  67.6116326
#> 223      BW      TH  31.9614460   5.37312284  27.9141870  23.1801396
#> 224      BY      TH  32.5003030   6.54390950  30.6490787  27.4585429
#> 225      SH      BW  26.1619952   6.65533055  26.2195488  25.4051288
#> 226      HH      BW  36.1207597  13.63284189  37.9051564  39.5045985
#> 227      MV      BW  50.4520503  18.53055830  45.0504243  39.6244760
#> 228      NW      BW  33.1206830   9.16028023  31.8092147  30.8334791
#> 229      HB      BW  50.2640769  22.05654475  51.7607265  53.1520227
#> 230      BB      BW  59.8482959  27.12771553  59.6135893  59.3910111
#> 231      BE      BW  44.7839799  16.49838132  45.7991604  46.5937999
#> 232      RP      BW  37.2513979  13.34233565  37.7111146  38.8286582
#> 233      NI      BW  66.1677123  32.71931984  68.0924405  69.5531399
#> 234      ST      BW  57.0860880  24.27747088  56.7932772  56.4581065
#> 235      SN      BW  46.6029291  17.26409982  46.1957980  45.6608556
#> 236      SL      BW  42.9423123  15.03926667  45.1392431  48.1970789
#> 237      HE      BW  46.6187224  19.98676387  53.1312301  58.8927503
#> 238      TH      BW  45.4592405  15.12405177  46.0212568  46.6453579
#> 239      BW      BW  59.2419521  37.37245371  58.7370703  58.6124471
#> 240      BY      BW  37.6144094  10.71734846  36.6092050  36.8193662
#> 241      SH      BY  24.2232823   6.33451815  24.6482531  25.2819151
#> 242      HH      BY  36.6611396  13.24887956  36.2671916  35.3087908
#> 243      MV      BY  44.1953308  18.79212240  46.8855409  48.1579354
#> 244      NW      BY  32.4136515   7.93688875  31.2785881  29.3928360
#> 245      HB      BY  52.8088138  21.56987962  51.5774578  49.9076584
#> 246      BB      BY  60.9728329  27.49198243  60.6124862  60.3586853
#> 247      BE      BY  49.1836466  17.59937458  46.6625990  43.5917623
#> 248      RP      BY  37.1598466  11.72806580  36.5661751  35.9820005
#> 249      NI      BY  68.1563045  32.03918833  67.8520529  67.6284680
#> 250      ST      BY  59.6373815  24.83520417  59.1232486  58.4924684
#> 251      SN      BY  49.9928299  18.75597145  49.2772416  47.8228317
#> 252      SL      BY  40.5632144  12.82329701  38.5180404  35.7294293
#> 253      HE      BY  53.4507614  18.83956319  52.8097787  51.8503777
#> 254      TH      BY  50.4813709  16.14885422  49.1933030  47.0807689
#> 255      BW      BY  36.6000497  10.57136425  39.2000900  40.6588545
#> 256      BY      BY  59.8385064  37.39603969  60.2497586  60.0175270
plot(spflow_results) # some plots for assessing the model










# MLE methods
logLik(spflow_results) # value of the likelihood function
#> [1] -548.9839

# MLE, OLS and S2SLS methods
varcov(spflow_results) # variance covariance matrix of the estimators
#>                     rho_d         rho_o         rho_w (Intercept)     (Intra)
#> rho_d        0.0009086574 -1.171459e-04 -0.0006129781  0.02147703 -0.01172771
#> rho_o       -0.0001171459  1.368082e-03 -0.0003832369  0.02821303 -0.01669415
#> rho_w       -0.0006129781 -3.832369e-04  0.0019625809  0.02782310  0.01641565
#> (Intercept)  0.0214770293  2.821303e-02  0.0278230978  4.67111589 -1.07380256
#> (Intra)     -0.0117277073 -1.669415e-02  0.0164156524 -1.07380256  2.34531706
#> D_X         -0.0003185996  2.403975e-03 -0.0006536813  0.03998041 -0.01878981
#> D_X.lag1     0.0005358630  9.064063e-04  0.0029819578  0.14016449 -0.01330464
#> O_X         -0.0008347485 -2.966763e-04  0.0003416020 -0.04693018  0.02461834
#> O_X.lag1     0.0001175570 -1.661665e-03 -0.0019199727 -0.16095050  0.01739528
#> I_X          0.0001932830  6.065356e-05 -0.0004389804  0.01457882 -0.10706317
#> P_DISTANCE  -0.0032790545 -9.210100e-03 -0.0025193738 -0.68102587  0.23098240
#> sigma2       0.0006839084  6.436158e-04 -0.0008072690  0.02927621 -0.01883151
#>                       D_X      D_X.lag1           O_X      O_X.lag1
#> rho_d       -0.0003185996  0.0005358630 -0.0008347485  0.0001175570
#> rho_o        0.0024039748  0.0009064063 -0.0002966763 -0.0016616647
#> rho_w       -0.0006536813  0.0029819578  0.0003416020 -0.0019199727
#> (Intercept)  0.0399804068  0.1401644942 -0.0469301797 -0.1609504982
#> (Intra)     -0.0187898147 -0.0133046362  0.0246183380  0.0173952806
#> D_X          0.0047117731  0.0010099393 -0.0003375339 -0.0028026660
#> D_X.lag1     0.0010099393  0.0131443750 -0.0017261178 -0.0074675250
#> O_X         -0.0003375339 -0.0017261178  0.0014513353  0.0006614985
#> O_X.lag1    -0.0028026660 -0.0074675250  0.0006614985  0.0085780258
#> I_X         -0.0003876059 -0.0005796298 -0.0006125004  0.0003864860
#> P_DISTANCE  -0.0144762373 -0.0298811873  0.0088086667  0.0253592314
#> sigma2       0.0010424510  0.0006775221 -0.0008221625 -0.0006364295
#>                       I_X   P_DISTANCE        sigma2
#> rho_d        1.932830e-04 -0.003279055  0.0006839084
#> rho_o        6.065356e-05 -0.009210100  0.0006436158
#> rho_w       -4.389804e-04 -0.002519374 -0.0008072690
#> (Intercept)  1.457882e-02 -0.681025872  0.0292762150
#> (Intra)     -1.070632e-01  0.230982398 -0.0188315100
#> D_X         -3.876059e-04 -0.014476237  0.0010424510
#> D_X.lag1    -5.796298e-04 -0.029881187  0.0006775221
#> O_X         -6.125004e-04  0.008808667 -0.0008221625
#> O_X.lag1     3.864860e-04  0.025359231 -0.0006364295
#> I_X          6.817460e-03 -0.001442223  0.0002110135
#> P_DISTANCE  -1.442223e-03  0.147405322 -0.0071251811
#> sigma2       2.110135e-04 -0.007125181  0.1241087598

# MCMC methods
spflow_results_mcmc <- spflow(
  y2 ~ . + P_(DISTANCE),
  multi_net_usa_ge,
  estimation_control = spflow_control(estimation_method = "mcmc",
                                model = "model_2"))
results(spflow_results_mcmc)
#>                    est  quant_025  quant_975         sd     t.stat
#> rho_d        0.4412606  0.3846987  0.4984196 0.02876601  15.339652
#> (Intercept) 10.5011075  6.8392127 14.2699031 1.90103967   5.523876
#> (Intra)     11.6363307  8.7061345 14.5600127 1.48718766   7.824386
#> D_X          1.0143050  0.9692560  1.0594282 0.02302016  44.061601
#> D_X.lag1     0.7329137  0.5841528  0.8839473 0.07595332   9.649527
#> O_X         -0.8052802 -0.8808949 -0.7298320 0.03831536 -21.017165
#> O_X.lag1    -0.4503336 -0.5657120 -0.3325744 0.05938663  -7.583081
#> I_X          1.9481702  1.7885691  2.1126829 0.08435211  23.095691
#> P_DISTANCE  -2.8909145 -3.3959727 -2.3718988 0.26064096 -11.091559
#>                     p.val
#> rho_d        1.016093e-37
#> (Intercept)  8.423279e-08
#> (Intra)      1.506906e-13
#> D_X         1.011488e-118
#> D_X.lag1     6.835659e-19
#> O_X          7.664474e-57
#> O_X.lag1     6.902731e-13
#> I_X          1.532208e-63
#> P_DISTANCE   1.899431e-23
plot(mcmc_results(spflow_results_mcmc)) # parameter values during the mcmc sampling